Fig1.DiagramofmicroRNA(miRNA)actionwithmRNA
MicroRNA简介
MicroRNA(miRNA)是一类内生的、长度约为20-24个核苷酸的小RNA,其在细胞内具有多种重要的调节作用(图1)。每个miRNA可以有多个靶基因,而几个miRNA也可以调节同一个基因。这种复杂的调节网络既可以通过一个miRNA来调控多个基因的表达,也可以通过几个miRNA的组合来精细调控某个基因的表达。据推测,miRNA调节着人类三分之一的基因。最近的研究表明大约70%的哺乳动物miRNA是位于TUs区(transcriptionunits,TUs),且其中大部分是位于内含子区。一些内含子miRNA的位置在不同的物种中是高度保守的。miRNA不仅在基因位置上保守,序列上也呈现出高度的同源性。miRNA高度的保守性与其功能的重要性有着密切的关系。
MicroRNA的产生过程
MicroRNA的合成始于RNA聚合酶Ⅱ的转录过程,通常其编码基因位于内含子区域并有自己的启动子区。伴随着长转录本的产生,Drosha,一种类型ⅢRNase,同辅因子蛋白DGCR8形成复合体后结合于pri-miRNA上(图2)。Drosha上的两个RNase结构域对pri-miRNA3’及5’末端进行切割,产生发夹状的pre-miRNA。随后,在exportin5-RNA?GTP复合体介导下,pre-miRNA完成核质转移过程。在细胞质中,一种称为Dicer的核酸酶与TRBP共同结合在pre-miRNA上并切割掉末端的环状区域形成双链RNA片段,后者随即被组合至RISC复合体中。AGO蛋白会对两条链进行选择,并选择其中一条形成有活性的RISC复合体,发挥其多样性的调控功能。
在人体中,miRNA的生成受到严格的信号通路调控,其中涉及到四类至关重要的酶分子,分别是Drosha、exportin5、Dicer及AGO2,如图2所示。在很多类型的肿瘤中,包括神经母细胞瘤、卵巢癌、肾母细胞瘤等都发现了这几类酶发生了关键位点突变。
Fig2.OverviewofmicroRNA(miRNA)biogenesis
MicroRNA在临床前研究中的应用
miRNA如此复杂而又精细的调节机制,使得整个信号通路在多种病理过程中成为很有希望的治疗药物(通常以miRNA类似物形式出现)或药物治疗的靶点(通常以antimiRs形式出现),如下表所示。与此同时,RNA分子输送技术的提高,也使得基于miRNA的疾病治疗方案变得更加现实。
表1.SelectedmiRNAsincancerandotherdiseasesandtheirtherapeuticmanipulationinpreclinicalmodels
MicroRNA相关药物研发流程
药物研发的基础在于对病理过程分子机制的深入理解。miRNA相关药物的研发也需要基于对患者样本进行深入系统的分析,并通过体内外模型阐明靶标miRNA与疾病间的生物学关系及发病机制。目前有很多的公共的数据库可供检索,能够查询到不同患者正常及病变组织中基因组学及蛋白质组学的相关数据。通过数据库分析与实验验证结合,可确定一些有希望的miRNA候选。接下来主要的挑战性工作包括对体内应用的miRNA类似物及antimiRS进行化学修饰以增加其稳定性,以及选择优化药物输送体系。
对于基于核苷酸的药物而言,其在体内发挥作用的最大障碍在于核酸酶的降解作用及内吞过程中药物分子从内吞体的逃逸。通过化学修饰,如增加2’甲氧基及LNAs等技术,可以提高药物分子的稳定性,延长其半衰期。除了通过化学修饰增加稳定性外,胶囊技术的拓展,也可以提高药物分子的输送效率。常用的输送系统包括脂质纳米粒,如中性脂肪乳剂或靶向部分连接的树状大分子复合物。对于药物输送系统,最大的挑战性在于潜在的免疫刺激作用及对病变区域靶向特异性的缺失。一旦这些困难能够解决,基于小RNA的治疗药物必须在啮齿类动物及非人灵长类动物模型中开展疾病特异性试验。此后还应该对毒理学数据及靶标响应性进行慎重的分析评估,以免临床试验在较早阶段即宣告失败。
Fig3.SummaryofthekeystepsinthedevelopmentofmiRNAtherapeutics
miRNA相关药物临床研究进展
miRNA最早发现于年,此后该领域进展迅速,在各方向均取得了巨大成就。其主要的三位发现人,来自麻省大学医学院的VictorAmbros、医院的GaryRuvkun以及英国哥伦比亚大学的DavidBaul